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a b s t r a c t

Klebsiella pneumoniae Carbapenemase (KPC–2)-producing and non-producing Klebsiella pneumoniae (KP)
have rapidly disseminated worldwide, challenging the diagnostics of Gram-negative infections. We
evaluate the potential of a novel non-destructive and rapid method based on Near-Infrared Spectro-
scopic (NIRS) and multivariate analysis for distinguishing KPC-2 – producing and non-producing KP.
Thirty-nine NIRS spectra (24 KPC-2-producing KP, 15 KPC-2 non-producing KP) were acquired; different
pre-processing methods such as baseline correction, derivative and Savitzky–Golay smoothing were
performed. A spectral region fingerprint was achieved after using genetic algorithm–linear discriminant
analysis (GA–LDA) and successive projection algorithm (SPA–LDA) algorithms for variable selection. The
variables selected were then used for discriminating the microorganisms.Accuracy test results including
sensitivity and specificity were determined. Sensitivity in KPC-2 producing and non-producing KP
categories was 66.7% and 75%, respectively, using a SPA-LDA model with 66 wavenumbers. The resulting
GA-LDA model successfully classified both microorganisms with respect to their “fingerprints” using
only 39 wavelengths. Sensitivity in KPC-2 producing category was moderate(E66.7%) using a GA-LDA
model. However, sensitivity in KPC-2 non-producing category using GA-LDA accurately predicted the
correct class (with 100% accuracy). As100% accuracy was achieved, this novel approach identifies
potential biochemical markers that may have a relation with microbial functional roles and means of
rapid identification of KPC-2 producing and non-producing KP strains.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gram-negative bacilli (GNB) of clinical importance can be
divided into two major groups. Glucose-fermenting, oxidase-
negative, and catalase-positive members constitute one group,
called Enterobacteriaceae [1]. Resistance to carbapenem among
members of the Enterobacteriaceae family has become a major
health care concern worldwide [2]. Klebsiella pneumoniae carba-
penemase (KPC)-producing bacteria are an emerging group of
highly drug-resistant bacteria causing infections associated with
significant morbidity and mortality [3]. Among the most common
clinical syndromes associated with KPC-producing bacteria pre-
sence are: pneumonia, urinary tract infections and manifestations
of wounds, bacteremia, chronic atrophic rhinitis, arthritis, dysen-
tery, meningitis, and sepsis in children, particularly those acquired

in hospital [4]. The genes for the 10 known KPC variants (KPC 2–11)
are carried on large plasmids [5]. Detection of KPC-2 producing
bacteria may be a challenge for clinical laboratories because in this
study it was associated with positive extended-spectrum β-lacta-
mase (ESBL) confirmation tests (clavulanate-potentiated activities of
ceftriaxone, ceftazidime, cefepime, and aztreonam) [6].

Traditionally, the tests for detection of KPC-type producing
bacteria and other microorganisms are combined in a series of
solid and/or liquid media which are inoculated with bacteria and
interpreted/analyzed after a certain incubation period. The classi-
cal approaches are based on agar diffusion methods [7], broth
microdilution (BMD) [8], modified Hodge test [9], polymerase
chain reaction (PCR) – based assays [10], among others. Although
these assays have achieved good sensitivity and specificity with
favorable positive and negative predictive values for these micro-
organisms, they often require multiple steps with additional time
needed for the clarification/discernment of species and/or detec-
tion of antimicrobial resistance. Moreover, slow multistep culture-
based assays are time consuming, labor-intensive and require
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skilled clinical microbiologists working in the lab. There is a need
for a quicker, non-destructive, sensitive, and specific means of
detecting and differentiating KPC-type producing bacteria strains.

Over the past decades, advanced molecular techniques in
diagnostic microbiology have been revolutionizing the practice
of clinical microbiology [11]. In particular, Near-Infrared Spectro-
scopy (NIRS) provides the ability to quickly detect analytes and has
been explored as an interesting alternative tool for the identifica-
tion of microbial species and subspecies [12–15]. Its sensitivity to
the CH, NH, and OH absorptions related to microbial components,
its speedy response time, the simplicity of sample preparation
involved, the fact that the measurement is non-destructive, and its
low instrumentation cost have fixed its position alongside other
spectroscopies, including ultraviolet, visible, mid-infrared, Raman,
and others.

Marques et al. [12] (2013) described the usefulness of NIRS in
the identification and classification of Escherichia coli and Salmo-
nella enteritidis from commercial fruit pulp (pineapple). The
authors obtained good performance achieving prediction ability
of 87.5% for E. coli and 88.3% for S. enteritidis, respectively.
Rodriguez-Saona et al. [13] investigated the feasibility of NIRS in
microbiology and the development of methodology for the quick
identification of bacterial strains such as Escherichia coli HB101,
non-virulent strain of Escherichia coli ATCC 43888, Escherichia coli
ATCC 1224, Pseudomonas aeruginosa, Bacillus amyloliquifaciens,
Bacillus cereus, and Listeria innocua. The use of NIRS spectral
information and multivariate techniques in this study showed
potential for the identification and subtyping of different bacterial
species. Arnold et al. [14] used NIRS to monitor a submerged
filamentous bacterial (Streptomyces fradiae) bioprocess. The pre-
sent work is original/new in fully reporting how NIRS can be used
to simultaneously measure the concentration of key analytes at-
line in an antibiotic production process involving a filamentous
bacterium, and in detailing the actual modeling process and
subsequent critical assessment of model quality and performance.

However, the method of data analysis is a critical aspect of any
diagnostic assay, particularly for NIR. The major difficulties in the
analysis of microbial species and subspecies are the weakness of
the NIR signals from strains components and the complexity of
overlapping bands. To overcome these difficulties, many chemo-
metric algorithms have been applied to NIR data such as principal
component analysis (PCA) for initial data reduction and explora-
tory data analysis [16], hierarchical cluster analysis (HCA) for
analyzing groups in a set of data on the basis of spectral
similarities [17], and linear discriminant analysis (LDA) for classi-
fying unknown samples into predetermined groups [18]. Further,
as part of the computational methodology, variable selection
methods such as successive projections algorithm (SPA) [19] in
conjunction with LDA and genetic algorithm (GA) [20] improve the
model performance compared with the full spectrum model.
These algorithms eliminate potential interferents and variables
that generate a lower signal/noise ratio.

Although these studies have shown that NIR together with
chemometrics analysis have been explored as alternative tools for
the identification of microbial species, little research has been
directed toward the use of NIRS and variable selection to be used
in pathogenic microbiology studies. Herein, we have attempted to
evaluate the potential of a quicker method for identification of
KPC-2-producing and non-producing Klebsiella pneumoniae
strains. For this, the present article set out to determine whether
biochemical intra-individual differences or “fingerprint” features
between KPC-2-producing and non-producing bacteria could be
identified using NIR spectroscopy with subsequent variable selec-
tion methods. We employed SPA and GA to select an appropriate
subset of wavenumbers for LDA. This approach can lead to more
selective and specific microbial detection for medically relevant

microorganisms by vibrational spectroscopy. Nevertheless, KPC-2-
producing and non-producing Klebsiella pneumoniae was never
discriminated by NIRS using wavelength selection to elucidate the
altered biochemical-microbial fingerprint.

2. Material and methods

2.1. Bacteria strains

Specimens of Enterobacteriaceae family from different biologi-
cal sites were recruited from three health centers in the city of
Natal / Rio Grande do Norte, Brazil from April 2012 to August 2013.
The specimens were cultured on blood agar (HIMEDIA), Mac
Conkey Agar (HIMEDIA) and Brain Heart Infusion Broth (BHI/
HIMEDIA) followed by inoculation in conventional atmosphere at
35 1C for a period of 24 h. The phenotypic identification was
confirmed by the Vitek automation system (BioMérieux Vitek,
St. Louis). The antimicrobial susceptibility testing, as well as
confirming the production of ESBL and KPC-producing tests were
determined by the disk - agar diffusion (Kirby - Bauer), as
recommended by the CLSI 2013.

2.2. Analysis of molecular pattern multi-resistance
Enterobacteriaceae

Enterobacteriaceae with phenotypic standard for ESBL [21] and
KPC genotypic analysis of the genes bla TEM, bla SHV, bla CTX -M and
bla KPC were sent. For extraction and purification of total DNA, 250
QIAamp DNA Mini Kit (Cat. no. 51306) from Qiagen kit was used. The
types of ESBL and KPC were determined through custom protocol to
Polymerase Chain Reaction (PCR) using specific primers. The primer
pair 5’–ATTCTTGAAGACGAAAGGGC-3’ (forward) and 5’–ACGCT-
CAGTGGAACGAAAAC-3’ (reverse) was used for amplification of a
sequence of 1150 base pairs (pb) from the TEM family [22]. For the
SHV family, the primer pair 5’–GGGTTATTCTTATTTGTCGC-3’ (forward)
and 5’–TTAGCGTTGCCAGTGCTC-3’ (reverse) (947pb) was used, for the
CTX-M family, 5’–TTTGCGATGTGCAGTACCAGTAA-3’ (forward) and
5’- CGATATCGTTGGTGGTGCCATA-3 ‘ (reverse) (544pb) [23] and KPC-
2,5- TGTCACTGTATCGCCGTC-3 (forward) and 5- CTCAGTGCTCT
ACAGAAAAACC-3 (reverse) (1100pb) [24] were used. The PCR was
performed using an appropriate protocol in a final volume of 25 mL
containing 1 mL of DNA, 16.25 mL of nuclease-free water, 2.5 mL of Taq
buffer 10X, 2 mL of deoxynucleotide mixture, 0.75 mL of MgCl2
(50 mmol L-1), 1 mL (10 pmol ) of each “primer” and 0.3 mL of Taq
DNA polymerase (5U μL-1, Ludwig, Alvorada /RS/Brazil). For the
amplification conditions of the bla gene CTX-M, bla SHV, bla TEM
and bla KPC were used at 94 1C pre-denaturation, 30 cycles of 1 min at
94 1C (denaturation), 2 min at 57.2 1C for annealing, 2 min 72 1C for
extension, succeeded by a final extension of 8 min at 72 1 C. After the
PCR reaction, the visualization of the amplified fragments was
performed by agarose gel electrophoresis (Ludwig) 1% in 1X TAE
(Tris-acetate).

2.2.1. NIR spectroscopy
Each NIR spectra (8 cm-1 spectral resolution, co-added for 32

scans and in triplicate) were directly acquired, in reflectance mode
on a miniature scanning Fourier-Transform spectrometer from
ARCspectro ANIR (Neuchâtel, Switzerland), which is based on a
lamellar grating interferometer (35 mm�35 mm�65 mm) and
uses a micro-mechanical actuator. The portable NIR device uses an
InGaAs photodiode (900 nm to 2600 nm) and the reflected light
was directed to the spectrometer through a bundle of optical fibers
(model R600-7-VIS-125F, Ocean Optics, USA) linked to the probe
end and the data acquisition and analyses were carried out by
ARCspectro ANIR 1.64 software. Absorbance spectra of DNA
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samples were obtained against the spectrum of reflectance stan-
dard (Labsphere, 8750) used as background. A disposable syringe
(1 mL) was used to place the samples (0.1 mL) on an aluminum-
plated backing plate (0.1 mm sample thickness). The trans-
flectance probe was positioned on the sample surface. The
transflectance probe was washed with ethanol (70% v/v) and dried
using tissue paper after each sample. Cleanliness of the transflec-
tance probe was verified by collecting an absorbance spectrum of
the probe using the most recently collected background as a
reference. Spectral measurements were done in an acclimatized
room under controlled temperature of 22 1C, 60% relative air
humidity, and samples were allowed to equilibrate to this tem-
perature before analysis. Sample positioning, data collection, and
storage took less than one minute per sample. Ninety spectra (45
KPC-2-producing Klebsiella pneumoniae and 45 KPC-2-non-producing
Klebsiella pneumoniae) were randomized. Fig. 1 shows the experi-
mental arrangement for sampling discrimination of KPC-2-producing
and non-producing Klebsiella pneumonia using NIR spectroscopy.

2.3. Chemometrics methods: PCA, SPA-LDA and GA-LDA

For microbial identification, two basic approaches can be
applied in the chemometric techniques: unsupervised and super-
vised techniques. The objective of unsupervised methods, also
called exploratory methods, is to depict the spectral data, without
prior knowledge about the microorganism studied. Principal
component analysis (PCA) [25] is a well-known unsupervised
way to reduce the number of variables, in which the spectral
matrix X is decomposed as:

X ¼ TPTþE; ð1Þ

where X is the I x J data matrix, T is the I x A matrix of score
vectors, the score vectors ta are orthogonal (i.e., TTT¼diag(λa) and
λa are eigenvalues of the matrix XTX), P is the J x A matrix of
loadings vectors, superscript T, as usual, indicates the transpose of
a matrix, E is the I x J residual matrix, I is the number of objects, J is
the number of variables, and A is the number of components
calculated. In other words, PCA is often used for reducing the
dimensionality of the data without decreasing their variance, and

each spectrum is then compared to the others in order to make
homogeneous groups.

The second approach is based on supervised techniques
coupled with variable selection methods such as genetic algo-
rithm–linear discriminant analysis (GA–LDA) and successive pro-
jection algorithm (SPA–LDA). In this report, LDA will refer to the
canonical discriminant procedure developed by Fisher in 1936 [26]
and designed to maximize between-groups variability relative to a
measure of pooled within-groups variability. The variables created
through LDA (factors) are linear combinations of the wavenumber-
absorbance intensity values [27]. Thus, the use of LDA for identifica-
tion or classification of spectral data generally requires appropriate
variable selection procedures [28]. In the present study, the valida-
tion samples were performed in SPA and GA to select the best
optimum number of variables by minimizing a cost function
calculated as:

G¼ 1
NV

∑
NV

n ¼ 1
gn; ð2Þ

where gn is defined as

gn ¼
r2ðxn;mIðnÞÞ

minIðmÞa lðnÞr2ðxn;mIðmÞÞ
ð3Þ

where IðnÞ is the index of the true class for the nth validation
object xn.

For this study, LDA scores, loading, and discriminant function
(DF) values were derived for the biochemical-bacteria fingerprint
region. The first LDA factor (LD1) was used to visualize the
alterations of the bacteria sample in 1-dimensional (D) score plots
that represented the main biochemical alterations.

2.3.1. Software
Data loading, pre-processing (mean-centering, Savitzky–Golay

smoothing with different windows (3, 5, 7 and 15), first poly-
nomial order, derivatization of first and second derivatives) and
PCA were implemented in a MATLABs version 7.10 environment
(Math-Works, Natick, USA) with the PLS-toolbox version 7.5.2
(Eigenvector Research, Inc., Wenatchee, WA). The KS, GA–LDA
and SPA–LDA classification routines were implemented in

Fig. 1. Experimental arrangement for sampling discrimination of KPC-2-producing and no-producing Klebsiella pneumoniae using NIR spectroscopy.
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Matlabs 7.10. For SPA-LDA and GA-LDA models, each class was
treated separately. The Kennard Stone (KS) algorithm [29] was
employed to select the samples which would compose the training
(60% of samples), validation (20% of samples) and test (20% of
samples) sets to the NIR spectra. Mean centering was applied to all
spectra before performing variable subset selection and calibra-
tion. The training and validation samples were used in the
modeling procedures (including variable selection for LDA),
whereas the test samples were only used in the final evaluation
and comparison of the classification models.

For the GA routine, the initial population was 120 individuals
with 60 generations each. The mutation and reproduction prob-
abilities were kept constant at 10 and 60%, respectively. The best
solution (in terms of the fitness value) resulting from the three
realizations of the GA was kept. The final results (SPA-LDA and GA-
LDA models) were expressed in terms of classification rates for the
validation set.

Receiver-operating characteristic (ROC) analysis is recom-
mended standard practice for test evaluation studies for non-
binary tests [30]. For this study, measures of test accuracy, such as
sensitivity (probability that a test result will be positive when the
disease is present), specificity (probability that a test result will be
negative when the disease is not present) were calculated as
important quality standards in test evaluation.

3. Results and discussion

3.1. NIR spectra

As can be seen in Fig. 1, NIR spectra acquired from two classes
(KPC-2-producing and non-producing Klebsiella pneumoniae) pre-
sent a consistent baseline offset and bias. Although these are quite
common features in NIR spectra acquired by diffuse reflectance
techniques [31], some pre-treatments need to be performed.
Among the pre-processing techniques tested, the one showing
better separation of the classes employing PCA, SPA-LDA and GA-
LDA was the combination of Savitzky-Golay first derivative (15
points window, first degree polynomial) and Savitzky-Golay
smoothing (15 points window). In all cases, mean-centering was
effectively applied to calculate the average spectrum of the data
set and subtract the average from each spectrum. A first-derivative
transformation makes unique spectral features of the different
bacteria strains more prominent. In addition, first-derivative
transformation is often applied to process spectral data since it
separates overlapping absorption bands, removes baseline shifts
and increases apparent spectral resolution. These effects are
shown in Fig. 2.

As seen in Fig. 2, the consistent baseline offset and bias after
processing were corrected and now it is possible to assign some

overtones and combination bands evidenced in the spectrum,
including the following: a weak band at approximately 1140 nm
was influenced by absorption exerted by the second overtone-
related alkenes; absorption peaks were recorded at approximately
1398 and 1485, both associated with the first overtone OH
stretching (water); a band at approximately 1632 nn is associated
with the first overtone �CONH� secondary amides, a probable
biochemical signature from DNA/RNA (cytosine, guanine and
uracil), while at 1756 nm there was influence from absorption
exerted by the first overtone �CONH� primary amides; a strong
band at approximately 1900 nm was related to OH combination
(stretching and bend modes); and the regions from 2110 to
2205 nm and from 2250 to 2300 nm were assigned to alkenes
(CH2 stretching and bend) and methylene (CH stretching and
bend), respectively. Tentative assignments to KPC-2-producing
and non-producing Klebsiellapneumoniae were based on systema-
tic comparison of these major regions with the band known [32].

3.2. Principal component analysis

After processing, the range of 900-2600 nm was submitted to
PCA analysis. The PCA model was built from the calibration set
using 2 PC explaining together 65.34% of the variance in the data
after applying the pre-processing (Savitzky-Golay smoothing and
first derivative). As can be seen in Fig. 3a, the classes are over-
lapped. This weak separation was obtained without using the
information that the samples belong to two different groups and is
indicative of features of/with spectral differences. The major loadings
(Fig. 3b) are in the 1400–1410 nm (first overtone OH stretching)
region with other contributing regions at 1890–1910 nm (OH combi-
nation) and 2150–2400 nm (alkenes and methylene bands).

Fig. 2. NIR spectra with first derivative of the Savitzky-Golay using a window of
fifteen points. (-) KPC-2-producing; ( ) no-producing Klebsiella pneumoniae.

Fig. 3. PCA results: (a) score plot of PC1 versus PC2 (KPC-2-producing: ■, no-
producing Klebsiella pneumoniae: and (b) loading plot (PC1, 48.92%).
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3.3. SPA-LDA and GA-LDA results

SPA was applied to the data set (KPC-2-producing versus non-
producing Klebsiella pneumoniae) and resulted in the selection of
66 variables, namely 900, 903, 911, 921, 930, 934, 942, 949, 963,
981, 990, 1308, 1393, 1410, 1417, 1425, 1443, 1455, 1463, 1481, 1489,
1502, 1860, 1885, 1914, 1923, 1937, 1943, 1956, 1974, 1990, 2006,
2025, 2045, 2059, 2069, 2086, 2107, 2129, 2173, 2192, 2224, 2248,
2264, 2285, 2297, 2314, 2332, 2358, 2376, 2403, 2422, 2441, 2465,
2480, 2494, 2520, 2530, 2540, 2556, 2561, 2577, 2587, 2593, 2598
and 2600 nm. Using the 66 selected wavelengths, the Fisher scores
were obtained and there was also good segregation from each
class. Fig. 4a shows the Fisher scores and Fig. 4b indicates the
wavelength selected by SPA–LDA. Upon examination of the
selected wavenumbers following SPA-LDA (Fig. 4b) indicate that
the main biochemical alterations were on CH2 stretchingþCH2

bending of vinyl alkenes (2192 nm) and CH stretchingþC¼O
stretching of CHO aldehydes (2224 nm).The SPA-LDA model
achieved a sensitivity of 66.7% and 75.0%, respectively, for KPC-
2-producing versus non-producing KP.

GA-LDA model for comparison achieved an improvement in
segregation between KPC-2-producing versus non-producing KP.
The GA resulted in the selection of 39 wavenumbers (of 909
available); these were 914, 927, 939, 958, 973, 993, 1065, 1075,
1128, 1134, 1144, 1157, 1178, 1190, 1200, 1270, 1318, 1322, 1341,
1342, 1372, 1376, 1391, 1438, 1458, 1458, 1576, 1592, 1596, 1600,
1606, 1824, 1943, 1953, 1993, 2340, 2367, 2399, 2450 and 2545 nm.
Using the 39 selected wavelengths (Fig. 5a),the Fisher scores for all

the samples of the data set (Fig. 5b) were obtained whose
minimum point cost function was achieved with 39 wavenumbers.
As can be seen, there was again an excellent separation from each
category. The accuracy of GA-LDA for KPC-2-producing was 66.7%
for sensitivity. For non-producing KP, GA-LDA model achieved a
sensibility of 100.0%. Several selected wavenumbers appear to be
of particular interest, namely the variables at 1318 and 2340 nm,
representing the CH stretching and bending of methylene and NH
stretching and bending of amide primary, respectively.

4. Conclusion

As was demonstrated, NIR spectroscopy facilitates the deriva-
tion of an integrated biochemical-bacteria fingerprint based on the
NIR absorbing properties of the constituent chemical vibrations.
The potential of NIR spectroscopy to discriminate KPC-2- produ-
cing and non-producing bacteria has been examined in this work.
The study clearly demonstrates that different phenotypes of
bacteria can be clearly segregated using NIR spectroscopy with
subsequent PCA, SPA–LDA and GA–LDA algorithms. These findings
have at least two important implications. First, NIRS and computa-
tional analysis can be applied as a novel approach to investigate
these microbial pathogens because the timely and accurate detec-
tion/identification is critical for patient treatment decisions and
outcomes for millions of patients each year. Second, with the
miniaturization of instruments for field measurements employing
light emission diode (LED) that emit radiation at wavelengths

Fig. 4. (a) DF1 � samples discriminant function values calculated by using the
variables selected by SPA–LDA of the data set (KPC-2-producing: ■, no-producing
Klebsiella pneumoniae: ; (b) the blue full circles indicate the position in the
spectra of the 66 wavelengths variables by using the variables selected by SPA–LDA
of the data set.

Fig. 5. (a) DF1� samples discriminant function values calculated by using the
variables selected by GA–LDA of the data set (KPC-2-producing: ■, no-producing
Klebsiella pneumoniae: ; (b) the blue full circles indicate the position in the
spectra of the 39 wavelengths variables by using the variables selected by GA–LDA
of the data set.
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previously selected (e.g., NIR), this approach may be used in
analysis or discriminatory simultaneous determinations based on
multivariate analysis [33].
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